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ABSTRACT

Power singularities at the apex of a flat, wedge-shaped, angula -
sector crack in a three-dimensional solid are studied. Using Boussii g
stress functions of elasticity theory, the problem is reduced to an
eigenvalue problem of a dual series. The stress singularity is found
to be stronger or weaker than one half, depending upon whether the apex
angle is greater or less than 180°. This tends to accelerate or retard

the crack growth at the apex until the crack front straightens out.
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SIGNIFICANCE AND EXPLANATION

Crack propagation and fracture in metals depends on the intensity

of the stresses in the vicinity of a crack. The classical two-dimensional

T ——

& theory of cracks indicates that close to the crack the stresses vary as

§

the inverse of the square root of the distance from the tip of the crack.

The constant of proportionality is known as the stress intensity factor.

There have been extensive investigations of the magnitude of this factor
for various geometrical configurations in two dimensions, since its size
determines whether the crack will spread, and, if so, how fast it will
spread.

Due to the difficulty of the problem, it is only in the last year
or two that serious efforts have been made to determine stress intensity

factors for three-dimensional situations, and some of these investigations

have certainly been wrong. Part of the difficulty lies in the fact that
the dependence of the stresses on the distance from the tip of the crack
is much more complicated than the inverse square root behavior observed

in two dimensions. This report examines the nature of the stress singu-

larity at the apex of a flat wedge-shaped angular-sector crack in a

three-dimensional infinite solid. The results indicate that the crack
growth at the apex will be such as to straighten out the crack front.
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APEX SINGULARITIES FOR CORNER CRACKS UNDER
OPENING, SLIDING, AND TEARING MODES

B. Noble, M. A, Pussaie a6d 8. L. P

INTRODUCT TON

In this paper, the stress singularities at the apex of a tlat, wo
shaped, angular sector crack in a three-dimensional solid are studicod The
crack is subjected to an opening, sliding, or tearing mode loading con ' tion.
These modes, together with their two-dimensional idealizations as commonly
seen in the literature, are shown in Figure 1. The two sets of figurcs become
identical when the apex angle approaches 180°.

For the two-dimensional case, it is known that the stress singularity at
the crack tip is of the order of one half for all of the modes. Howevei, when
the two crack fronts meet at a sharp corner, as shown in Figure 1, the stress
singularity is no longer of the order of one half but depends mainly ou the
included angle as well as the mode the crack is subjected to, namely mode 1,
II, or I1T. A crack subjected to an arbitrary load can be decomposed into
these three basic modes.

As far as singularities are concerned, it is of interest to note the
equivalence of crack and punch problems. 1In such a case, the angle of the
base of the punch and that of the cracked area are explements ot cach othes
and in the loading process the punch is held stationary. A mode I crack
problem can be reduced to a problem in potential theory, but the other wmode.
cannot,
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Fig. (1) - Three basic modes of two-dimensional, and the correspond-
ing three-dimensional flat wedge-shaped, crack surface
displacements.

The potential problem of charge distribution at the tip of a flat angular
sector was solved by Noble (1959) [1]. Subsequently, due to a wide application
of potential theory in the field of mathematical physics, a number of papers [2-
7] appeared for the same problem. Even though the methods and approaches are
different in these papers, the final results are the same as [1].

In this paper, we use Boussinesq potentials of the three-dimensional theory
of elasticity. Assuming power law singularity and using separation of vari-
ables, the problem is reduced to a dual series relation for the case of mode I,
and coupled dual series for modes II and III. Based on [1] a method is devel-
oped to solve these coupled dual series. The power, versatility, and gener-
ality of the method can be seen from the simplicity with which new results are
obtained. It is shown how results of any desired degree of accuracy can be
obtained from simple algebraic computations.




THE BOUSSINESQ SOLUTIONS IN SPHERICAL COORDINATES

In the absence of body forces, the equation of equilibrium for a homoge

i neous, isotropic, elastic body, in terms of displacement vector, is
3 | P ) ~1 =

. Vi + (1-2v) VWeu = 0 (N
; Here v is Poisson's ratio. According to Roussinesq, the general solution of

Eq. (1) may be written as a superposition of three displacement fields, 0,
ug, Uy
264, = Yy , 2060, = 2Vx (kO) , g = V() - 4(1 V) K (M

where G 1s the shear modulus, and ¢, O, X\ are arbitrary harmonic functions,
These will be referred to as basic solutions 1, 2, and 3, respectively.

We wish to investigate the order of power singularities at the apex. To
this end, it is necessary to investigate the near field solution in spherical
coordinates (r,0,¢), without implying that the solid under consideration is of
a spherical shape.

We choose the following spherical harmonics

T M+l m . cos
dm =y Pu'l(LOSO) sin mé
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Fig. (2) - A flat, wedge-shaped crack.

where PT is the associated lLegendre function of the tirvst Kind., Upon substi
tution gy, into the first basic solution of (2), we obtain a solution desig
nated <ymLo\ica\ly by {1-¥,). Similarly we obtain solutions {2 Op) and [3-3,1.
The selection of cos md or sin md in cach stress function depends on the
symmetry of the problem. Our objective is to find the value of p in the open
range of (0,1). The final solution [S] is the superposition of these solutions

[s) =} (A [1-9,] + B [2-0,] + D_[3 A0 (3)

where, and therecafter, Z denotes the summation with rvespect tom form - 0,1,
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On the plane 8 = n/2, the components of displacement and the pertinent compo-
nents of stress for [S] are:

2(‘,ur = X [(u’l)% + 2mBm]ruP:.l 2(;: m \
2ug = I [-(mepe DA, + (3-4v)D JrVP) i?: "
Guy = I (¢ mA, - Z(U’l)"m]""’ﬁol Z’é'i mé > (4)

m cos
U+l sin

Og = z [-(m¢u*l)A,‘ + 2(1‘V)Dm(-m0u¢l)]r“"‘p b

Tge = 3 [-H(mepe DA J m(mepe1)B (1—2v)po]ru']PE ;g: mé

"

Z [’m(mou*l)Am + (mq\nl)sm e (l—2v)mDm]r"'lp’“ sin m

To¢ U cos

where P™ = Pm(O) and whenever there are two signs preceding a quantity, the
sign on the "top goes with the trigonometric function on the top and vice versa.

'HREE MODES OF CRACKS AND DUAL SERIES RELATIONS

For a crack shown in Figure 2, the leading edges of the crack are ¢ = + a,
and the crack is in the x-y plane (6 = n/2)., Let D™ and D* be the cracked and
uncracked region of the plane 8 = w/2. Within the cracked region, the displace-
ment is discontinuous. If the discontinuity is in the z-direction (uh - ug =
finite), the crack is under mode I; if the discontinuity is in the x—Sirec?ion
(u* - uZ = finite), the crack is defined to be under mode I1; and if u} - uj =
finite, the crack is defined to be under mode III. Boundary conditions for
various modes are tabulated below.

Boundary Conditions on 6 = w/2

Non Mixed Conditions ﬁ;;ed Conditions ]
(in D™ + D% in D- in DY
. S ———
Mode 1 Tae ® Tas = 0 Og = 0 ug = 0 (5)
3]
Mode 11 ogr= 0 o¢ Tgr = Tgg = 0 Up = ug = 0 (6)
Mode 111 Og = 0 Tor * 190 = 0 a, = u0 =0 (7

For mode I, ug is even in ¢. This leads to the use of the trigonometric
functions at the top of (4). The boundary conditions of (6) and (7) are
identical, but the symmetric properties are different for mode II and mode
I11. In the former case, u, is even and uy is odd in ¢ while in the latter,
the reverse is true. Hence the proper set of quantities should be selected
in (4), for each case.
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A, Mode 1
Using Eq. (4) and the non-mixed conditions of (5), we have
By = 0 and Ay = (mepel) 1 (1-20)Dy,

The mixed bound 'ry conditions of (5) and using (8) and (4), yicld

Y by cosmp = 0 O<¢<a
2 qmbm cosmp = 0 Q<<
where

by = (-mepe1)Dd PV

=1 ym,ym
‘l’l » Qm = (““"“’l) pu/P

uel
B. Mode I1

For the homogeneous condition of J9 in (6) using (4) thoe coodt

A and D must satisfy
-1
Am = (mepel) 2(1-V)D,

This relation and the mixed conditions of (6) yield the following

series:

2 Epcosm = 0 0<¢<a
I (RE S, Fp)cosmd = 0 a<g<m

1Fmsinm¢ =0 0<¢$<a
{l(umpmonﬁm)sinm¢ = 0 a<<n

where Xl denotes the summation with respect tom form = 1, 2,
B = (mene D) [Age2m (LW BP0 Fpy = (mene 1) [mAe 2 (1-V) B, 10
Ry = (m*-uuel) -0V, Sy = m(l-v-wu)Vy
Tp = m(lepv)V, Uy = [(1-V)m? - HGeD v,
. . . ; m m S |
in (14) and (15) V stands for Pu*l/Pu/[(m#uél)(m -u9)].
C. Mode 111
Similar to the preceding case, we have
Y Epsinmd = 0 0<d<a

Ty (RGBS F o sinmd = 0 a<den

wle

(8)

(9)

(10)

(1)

13)
14)

18)

6)




z Fpecosmg = 0 0<¢<a
(a7
L (U F *T E ) cosmé = 0 a<<m
SOLUTIONS OF SINE AND COSINE SERIES

For the solution of (9), (11), and (12), (16) and (17), we neced the exact
solutions of certain dual sine and cosine scries.

A. Sine Series

Consider a dual series of the form

21“n5i““x =0 Xg<x<m
1 (18)
21 “~ansinnx = f(x) 0<x<x,
A solution is given by [8]
g(t) = - L sec ;“’- 2 'S*i‘]_?;u;:(i‘@)‘-—‘du iy
. dt "t Jcost - cosu
with 5 >
Gu) = cot ¥ 4 Db T AR 20)
< d4 %% V(cosx - cosu)
Where X
) innx, for 0<x< and a, = 2 / ®g(t) sinmtdt
g(x) = ‘1an sinnx, for X<Xy, an ks 3 g(t) sinm S
For f(x) = €y sinx, we obtain, using the abbreviation B = cos xg,
¢y -1/2
g(x) = - sin X (2cosx + 1 - B)(cosx - B) (21
/2‘ -~
s 3 5
G =y (BB~ BB, - P s w B o B SR (22)
For f(x) = C,sin2x, the corresponding results are
g(x) = - V2 C,sin ; (cosx-B)-1/2(B+B'-2cosx*28cosx—4coszx) (23)
a, = - ; (2P 3+ 28P, 2+ (- 1+8%)P, 1+ (1-B?)P-2RP 1 +2P 5] (24)
Similarly, for f(x) = C3sin3x, we have
3C4sin(x/2)
g(x) = — > ——-— [16cos x+8cos?x(1-B) -2cosx (3+2R+R?)-B*-R2+3B-1] (25)
V2 (cosx-B)
A = 3[2(P_ 4Py, 3)-2B(P 5P )= (BT-1) (P _5eB(P_1+P))-P,,,)]/4 (26)




B. Cosine Series

The cosine scries under consideration have the form

Z ajcosnx = 0 X X<
(27)
w N
o.a_ + Z L a,Cosnx = Z P .a _cosnx 0<x<x
oo 1 > Tt 1 Sy nn » o
A method of solution is developed by Noble [1] for finding the lowest eigen-
value for mixed problems in potential theory. The method uses a stretching
transformation due to Schwinger [9]. Let
X ajcosnx = h(x) for 0<x<x, (28)
Yh\‘“' : 1 J’XQ} \ % 2 Ixoh e d ‘Q)
A = S 1(x)dx, & » = (x)cosnxdx (2§
0 o
Upon substitution from (29) into the second equation of (27), we have, for
0<x<x 4,
X il X X
ag,"0 2 (o 2.%0 4
Po Pf h(u)du'z 1 2 f h(u)cosmu cosmxdu=29m J h(u)cosmudu cosmx, (30)
L m -
0 1 o 1 o
Using the stretching transformation
cosu = t + s cos§ (31)
where t and s, determined from u = 0, Xo corresponding to § = 0,w are
t = cnsz(xo/S), $ = sinz(xo/E) (32)
A similar relation is assumed between x and r. Using [10], we obtain
5 1co$mu cosmx = - }ﬁn{llcosuwcocxl}r~0nﬂ/2¢y lcosm( cosmi (33)
o ! m 2 ) e -1 m » >
Equation (30) becomes
n o m
: 1 du } 2 du
-tns) 3 dE+) = = S~ cosmidE cos =
Py ns) "f h(u) dJE dé, z = “f h (u) dE cosmédé cosmy
\] 1 o
: 24" du "
Yo J h(u) = cosmudf cosmx , 0<x<m (31
il dg
0
On the right hand side of (34), cosmu and cosmx can be transformed to cosmi
and cosmg in virtue of (31). Let
h(u) du . ) ¢, cosng 0<E<m (35)

dé,




then

1"
ig]

L f h(u) gg .8 f h(u) Q% cosmé,d & (36)

Upon substitution from (36) into (34), we have a trigonometric equation in
cosmi,.  Fquating the coefficients of like terms, a system of algebraic cqua-
tions in ¢'s is obtained. For non-trivial solutions, the determinant of the
set of equations must vanish which is used to find the eigenvalues.

\pt\ltlLllly. if p = 0 for n > 1 in the last equation of (27), then ¢y = 0
for m > 1 and for o # 0, we must have
Po - ns = 0 (87
For the case Py # 0 and By ™ Q. m > 2 then Cn ™ 0 for m > 2 and
“Po * Ins + ltzpl stpy co
=0 (38)
2stp) -1 + pys? y
Similarly, when N = 2 on the rlght hand side of (27), ¢ = 0 for m > 3 and
€or» €1» €3 satisfy, using 21 for s2+2t2-1,
"y L TN 2 B - et | b o
“Potlins+2t 01’321 Py Stpy+dstlyps S 2102 <o
Istppe2 (45t) 0, ~les?p e (1st)?p, ¥ (dst)p, c, |= 0 (39)
25’%102 sz(Jst)pz = s*psy <,
SOLUTIONS OF FLAT, WEDGE-SHAPED CRACKS
A. Mode I
The second equation of the dual cosine series (9) can be written as
b 1 ~ - ok l -~ o > A& ‘Q)
Qobo ¢ Zl = by cosm$ = Zl(iﬁ - qm)bm cosmd as$<n (40)
Using the last equation, p. 63 of [11], we have
an = 7 TEELy @y ra o By p@cpel (41)

For a large m, qu » 1/m, [1], therefore the infinite series on the right hand
side of equation (40) could be truncated.

In order to use the solution of cosine series presented in the preceding
section, we make the following change of variables

$ = T-w, Xxg = m-a, cosmp = (—1)mcosnmh (—1)mbm i ™ (42)




i

e L

e dual cosine series (9) take the form

+ ~ =
ay X[am COSMW 0

X0<m<TT
(43)
a, * Z 1. SoSmw = 5 (L - Ja, cosmw O<w<x
0 ] § "™ SEUTRER PO T Radie
As a first appruximation, we drop out the infirite series on the id side
of (43). VUsing (37), we have a transcendental equation
. g 1
cos(P) = explag/2), g = - 5 [FEPH/TQ + )2 (44)
from which y can be determined for a given half angle a of the welgpe. or
the second approximation, only one term is taken in the series on the = ght
hand side of (43). Using (38) the value of p is found as follows:
qo—lns-2t2(l—q1) -st(1-q;)
= 0 (45) o
-2st(1-q;) 1-s’(1-q1) t
where s,t are given by (32), (42) and qqp, . %
e
qp from (41). [ %
el AN\
Similarly, the third approximation can ‘O%L i 5
be carried out. The results of each approx- ' i
imation are shown in Figure 3, showing a .
remarkably fast convergence.
P YRETV, A
o 05
n
Bign (3) = Vs, ofm £ T !
crack.
B. Mode II
Using the property Pu*l(O)/PE(O) + (-1) for a large m, it at
asymptotically:
Ry * (-1/m) , S+ (-1/m?) , . (-1/m*) , Uy > -(1-v)/m
Ihe second equatlons of the coupled dual series (11) and (12) can I« on as
L)
T 2 U T 3 i
g = Fpsinmg = )"[(m- + 1.9)Fm * oy Em]sinmé as<m (16)
R Eq *+ g o Epcosme = 12[(ii + R )E+S F]cosmd a<<m (47)

After the change of vnrliblcs similar to (42) with sinm¢ = (-1)Ir g

(-1)™Ey and Fp* = (-1)"

The dual series take the form

i

e




* g = <
lem sinmw 0, xg<w<m

(48) 1Or~
sinmu, O<w<xo

21 % Fm*sinm» = 1C1m i

ZEm*CUsm» = 0, Xp<w<m [

CCI D \NSUH
_R0E0*+X1 - Em*cosmw = ZICZmEm*Cosmﬁ: 0<6<xg Las: m-3 o

where

8 |

_.1 B
Cyp = (1-V) (U Fp*-T,E

* *
m m m’m )+Fm /m 2

A S S [
o oS

— =] " almw-——
= m +R S F /B * (50)

€om
Fig. (4) - p vs. a/m for

For a large m, both ¢, and c, - 1/m?. a mode IT or a
Im 2m
mode III crack.

As a first approximation, we take only one term, m=1, in the infinite
series on the right hand sides of (48) and (49). From (22) we obtain

Fi* = (1-8) (3+8) [Fy*- (1-v) T (U;F *+T,E ) 1/4 (51)

where El* can be determined from (29), (31) and (36).

2

X m
By® = fog(u)cosudu = %foh(u) o

£ (t+scosg)d = 2tc0+sc1 (52)

el
For the cosine series (49), we obtain two equations from (45)
3
-25tC21C0+(1-52C21)C1 =0

- - - 2 -
( Ro ns 2c21t )co stc

These two equations and (51) constitute a system of linear equations in cq, cj,
Fi*. For a non-trivial solution, we must have

; Ro+2ns+2t2(1+R1) st(1+R)) -ts
25t (1+R}) -1+s?(14R)  -ssy =0 (53)
-tTy/2 -sT,/4 - (1-v)/ (1-B)/ (3+B)+(1-v-Uy)/4

This is the equation for the determination of u.

We can proceed in a similar manner to higher order approximations. In
Figure 4, we have shown results for v = 0 for the first three approximations.
The difference between the second and third approximations is very small.
Hence we stopped at the third. Since the results did not differ from the
second to the third approximation, we only plotted the third approximation
in Figure 5 for different Poisson's ratios.
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Fig. (5) - The third approximation of y vs. a/n for a mode II or a mode
IIT crack.

C. Mode I1I

In comparing equations (16), (17) with (11) and (12), we see that the
coupled dual series for mode III are obtained from those for mode II by inter-
changing Ey and Fy, Ry and Uy, S, and Ty, The same approximate method for
mode II can be applied to mode I1II. For v = 0, mode Il and mode 11T have the
same resuits which are plotted in Figure 4. For v = 0.25 and v » 0.5, only
results from the third approximation are plotted in Figure S.

iy CONCLUSTONS

The equivalence between the potential problem and the crack problem under
mode 1 or the feictionless punch problem has been known for a long time. The
wide applicability of potential problems has been a prime motivation in obtain
ing the singularities at the apex by various methods. In this paper, however,
we have presented a method of solution for mode Il and 11T conditions. The
method gives results to any desired accuracy and, to the best of our knowl-
edge, is not yet available in the open literature.

For modes other than opening mode, the results show that the stress
singularities are dominated by the angle of the apex as well as the elastic
constant of the material. The results further indicate that when the apex
angle is greater than 180°, the stress singularity is stronger than one half
enhancing the tendency of crack front to straighten out. Similarly, when the
apex angle is less than 180°%°, the stress singularvity is less severe than one
half and, again, this will tend to retard the growth at the apex until the

. crack front straightens out.

It should be noted that the definition of modes IT and 111 is quite
" arbitrary for the configuration under consideration, since the crack fronts
away from the apex are under mixed mode conditions of the conventional type.
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